Probability Inequalities for the Sum of Independent Random Variables

Author(s): George Bennett

Source: Journal of the American Statistical Association, Vol. 57, No. 297 (Mar., 1962), pp. 33-
45

Published by: American Statistical Association

Stable URL: http://www.jstor.org/stable/2282438

Accessed: 20/02/2009 02:18

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajourna or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Satistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal
of the American Statistical Association.

http://www.jstor.org


http://www.jstor.org/stable/2282438?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

PROBABILITY INEQUALITIES FOR THE SUM
OF INDEPENDENT RANDOM VARIABLES

GEORGE BENNETT
University of New South Wales

This paper proves a number of inequalities which improve on existing
upper limits to the probability distribution of the sum of independent
random variables. The inequalities presented require knowledge only
of the variance of the sum and the means and bounds of the component
random variables. They are applicable when the number of component
random variables is small and/or have different distributions. Figures
show the improvement on existing inequalities.

HE distribution function for the sum of independent random variables,
Tx1+x2+ -+ +4z,4+ - -+ 42, when some information about the distri-
bution of the z; is available . . . may be regarded as the very starting point
of a large number of those investigations by which the modern Theory of
Probability was created” Cramér [5, p. 196].

Much work has been carried out on the asymptotic form of the distribution
of such sums when the number of component random variables is large and/or
when the component variables have identical distributions. The majority of
this work, while being suitable for the determination of the asymptotic distri-
bution of sums of random variables, does not provide estimates of the accuracy
of such asymptotic distributions when applied to the summation of finite num-
bers of components. Godwin [7, pp. 935-8] reviews publications giving results
which allow such numerical approximations to be obtained. However, a search
of the literature reveals that there is little information on the distribution func-
tion of a sum when the number of component random variables is small and/or
the variables have different distributions. Yet, for most practical problems,
precisely this distribution function is required. This paper, therefore, deals
with such cases and restricts its scope to bounded variables with known vari-
ances.

The inequalities presented are all one-sided, that is, of the form
Pla—E(a) Ztsc] <b. Since reversing the sign of all the component variables
does not alter the applicability of the ensuing analysis, it follows that
Pla—E(a) £ —to] <b, and from this it is obvious that the two-sided inequality
P[|a—E(a)| Zto] <2b must hold. In general, this is a much weaker inequality
than the one-sided inequality from which it was derived, since the latter is
necessarily based on the combination of component distributions that maxi-
mizes Pla—E(a)Ztsc] and this probability is then usually greater than
Pla—E(a) £ —to].

TERMINOLOGY

Let 21, 2, - - +, T4 * + -, T, be totally independent random variables, with
Var (z;) =0¢? and bounded so that |z;—E(z;)| <M. Let

M = max (M,), S= >, x; and ¢ = Var(S) = >, e
=1

i=1

* Godwin [7] reports this incorrectly, due to misplaced brackets.
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In what follows, E(x;) will be taken as zero, without any loss of generality.

EXISTING INEQUALITIES

The well-known Bienaymé-Tchebycheff inequality, that is, P[|a—E(a)| 2 ts]
=<1/#, holds for all probability distributions, and can, therefore, be applied to
the distribution of the sum of random variables to give

1
P = ts) < P(|8] = to) S

Uspensky [13, pp. 198-9] improves this result to give the following one-sided
inequality:

Pz to) =
1412

The limits given by these two inequalities are generally weak when applied
to the sum of random variables, but it will be shown that for small values of ¢
they are lower than the limits given by alternative inequalities.

Bernstein [1; 2, pp. 159-65] proves that

t2
PS=to) <exp|— T,
24— —t
3 o

when the component random variables have restrictions on their absolute
moments which are less than bounded. Bernstein’s inequality leads to the
obvious extension

t2
2+2 Mt'
3

o

P(]SI =to) <2exp|—

Kolmogoroff [9, Satz IT] provides limits for the probability that at least one
of the partial sums of n random variables exceeds a given value. These limits

give, inter alia,
t M —2m
P(|8] zt) = (——— —)
m

g

where m is a positive integer.* Therefore,

P(S2t0) < P(|8] 2 t0) < (—t— —g>_2m.

m g

Lod&ve [10, Sec. 18.1, pp. 254—5] provides exponential limits for the distribu-
tion of sums of independent random variables. His proof contains several mis-
prints and an error (p. 255), where he replaces X by X/o, but does not alter
the bound to ¢/o. The corrected inequalities are:
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If

M i2 t M
t— =<1, then P(Sgta)<exp<——2—<1————)>

T 2 o

and if

= y = Z‘ r

g

Berry [3] proves that
M
PS=zto) <1 — @) + 1.88 —
g

where ®(¢) is the distribution function for a unit normal random variable.

When these results are evaluated for values of { up to 15, it is found that, at
least over this range, Kolmogoroff’s inequality never provides lower limits
than

(a) the lower of either Bernstein’s one-sided or Uspensky’s inequality, in the

case of one-sided probability limits;

(b) the lower of either Bernstein’s two-sided or Bienaymé-Tchebycheff’s

inequality, in the case of two-sided probability limits.

For all values of ¢ and of M /o, Lodéve’s inequality produces higher limits to
the probability than Bernstein’s inequality.

Berry’s inequality does not offer any improvement over the combination of
Bernstein’s one-sided and Uspensky’s inequalities unless M /o <0.27; for lower
values of M /o Berry’s inequality gives lower limits for small values of ¢ only.
Thus, for M/¢=0.25 it gives lower limits for ¢<0.6; for M/s=0.1 for t<1.8
and for M /o=0.01 for ¢ <2.9 approximately. Such low values of M /¢ require
a large number of component random variables. For example, to obtain
M /s=0.1 requires at least 100 component variables and M /o =0.01 requires
at least 10,000 component variables.

Graphs of P(S=ts) against ¢, for values of M /s of 3, 2, 1, 0.5,0.25, and 0,
as given by the best combination of the above inequalities, (namely, Bernstein’s
one-sided and Uspensky’s inequalities) are plotted on linear probability paper
in Figure 1. Berry’s inequality for values of M/ of 0.25, 0.1, and 0.01 are also
plotted. The distribution function of the normal distribution has been included
for comparison purposes.

Bernstein’s original work was published in Russian and appears to be un-
obtainable. It is reported—indirectly—by Craig [4], who eased the restric-
tions on the inequality, and by Uspensky [13, pp. 204-6] who indicates the proof
in a series of exercises. The inequality is mentioned or quoted without proof by
Savage [12, pp. 35-9], Godwin [7, p. 396], Mallows [11, p. 140], David [6, p.
172], and Kendall and Buckland [8, p. 25]. Apart from these brief references,
Bernstein’s inequality seems to have escaped notice in the English-speaking
world. A version of the proof is given here because the original is inaccessible
and the steps are similar to some in the improvements which will be presented
later. Let
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d c'x:
¢>0, then e=i=14cx;+ D, '
r=2 T!
and
© ¢ E(x,;
E(e=) = 1+ cE(z) + 2. (' )
r=2 r!
r—2 r.
1 ©» ¢ E(x;
=1+ cor 3 ¢ @) since E(z;) = 0.

1 2
Z r=2 3T !0"
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Let
r—2 T,
* ¢ E)
Fi= X — )
r=2 aTio;

then

cx;

Ee ) =1+ %czafFi < exp %czafFi
and since the z; are independent,
E(ecs) = E(ec(rl+zz+' . -+zn)) = E(ecn) .E(ecu) v E’(e“")
< exp (3¢ oiFs) -exp (hc'oas) - - - exp (3¢ onFn)
< exp (3¢%*F) where F = max (F)).

If h(y) is a non-negative function of a random variable y with frequency fune-
tion f(y), and if A(y) =b when y=aq,

B - [ @y 2 [ h)Gay b [ swa=sreza

hence
Eln
Pz a) < hw)]
b
If h(y) =ew, then for every positive c,
E(ev)
Py za) = .
eca
Let y=8 and a=ts, then
cS
PS=to) = ) < exp (3¢%%F — cto). 2)

ectcr

The right-hand side of this equation is minimized by

c=— 3
7 &)
therefore,

2

P(S = to) < exp (— % ;;) = exp (—icto). 4)

Bernstein restricted himself to the summation of random variables whose
absolute moments obeyed the following inequality,

v = E(| z:]) LW el * = 2, W being a constant.
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Since E(x}) §E(l xil "), substituting the above inequality into equation (1)
gives

r—2 2 r—2
© ¢ oW 7! i — s . -
F¢§Z~—21(T—2—'———= W) T = W) =1 =)
r=2 200 r=2 =0
ifeW <1 5)

and since F; does not depend on 7,
F=max(F;) = (1 —cW)™L (6)
From equations (3) and (6),

therefore,

the latter satisfies (5) if the equality sign is taken. Substituting this value of ¢
in equation (4) leads to

t2
PS=tr) <exp|— ————|. ©)

w
242—t
¢

Since random variables bounded at M have »,< Mr27, it follows that for
such variables W can be taken as M /3 and F <(1—cM/3)~), where

cM/3 =cW < 1.
Substituting W= M/3 into equation (7) gives
t2
P =to) < - —. 8
(8 2 to) <exp 2_|_2Mt ®
3 ¢
Equations (6) and (8) are Bernstein’s inequality.
FIRST IMPROVEMENT

Bernstein’s inequality can be considerably improved at equation (2), with-
out any further restriction upon the distributions of the component random
variables. Since F is itself a function of ¢, equation (2) is actually

P(S = ts) < exp (ﬁ)— - cta). (2a)

The right-hand side of this equation is minimized by
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W —1/2
cW=1—<1+2—t)
g

and substitution of this value of ¢W into equation (2a) gives

P(S=ts) <exp|— _—]. (7a)

W w
1+ —t+ 4/1+2—t
ag ag

P(S =z to) <exp|— ; == (8a)
1+— —t+ 4/14-—‘— —t
3 ¢ 3 o

Since for identical values of M /s and ¢, the denominator of (8a) is smaller than
that of (8), equation (8a) will give lower values for P(S=ts) than will Bern-
stein’s inequality. Figure 2 shows graphs of the improved inequality and illus-
trates the degree of improvement.

If, as above, W=M/3,

SECOND IMPROVEMENT

The above inequality can be further improved when the component random

variables are subject to »,<M™2¢?, which is the case for random variables

bounded at M. It follows from equation (1) that for such variables

r—2_ r—2 2 r—2 s
L E(x.) ¢ M o © (M) 2. (cM)
D D
r=2 47"0' r=2 b1 !O'i r=2 §7‘! =0 —2-(8 + 2)'
eM —1—cM ©
- (cM)?
and since F; is dependent only on M and ¢, which are independent of ¢,
eM — 1 —cM
F=max(F,) s2—F———
(cM)?
Equation (2) then is
2
P(S = to) < exp [(]%{) (eM —1—cM) — cta]. (2b)
The right-hand side of this equation is minimized when
M
¢cM =1In (1 -+ — t)
ag
which when substituted intoe equation (2b) gives
M\t E@/M)+ 1M
P(S = to) < ette!) (1 +t —) (8b)
g
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which provides lower probabilities than equations (8) or (8a). Figure 3 shows
graphs of this inequality by unbroken lines (that is, R=0).

THIRD IMPROVEMENT

It was stated above that for random variables bounded at M, E(z]) < M™2?.
While this equality can be attained, it cannot be attained simultaneously for
all values of r. The equality sign will hold only if the distribution consists of at
most three points (namely, +M, — M, and 0) with non-zero probabilities. In
that case, P(x;= -+ M) must equal P(z,= — M) to give E(x;) =0 and E(2]) must
then be zero for odd values of r. Therefore, the equality sign in equation (9) can-
not be attained under any conditions.
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For a random variable z;, with variance o and bounded at M, the value of
E(e*=) is maximized by the discrete distribution with

o o ] M
P(xi=M;) =m and P Ty = —E =m (10)
when
) oieCM‘ + Mfe_c(v’z/M")
E(ec) = Mt o : (11)

This can be proved as follows (the suffix ¢ has been dropped in this proof).
Consider the function

o) = ux?+vr +w

where u, v and w are determined by the conditions

- (5o ) el )

Then, e*<¢(z) when z<M and ¢>0, so that
E(e”) £ E[¢()] = E(uz® + vz 4+ w) = uo® + w. (12)

This value of E [¢(z)] is the maximum value of E(e*) in equation (11), equal-
ity being attained in equation (12) with the distribution (10) since it has non-
zero probability only where ¢(x) =e. From equation (11)

Mg —c(od/M;
B = 14 7€ = DI -
0T M+ o
cM; Mi 2 —cM (/Mg 2
- 1+%czai|:e””—- 1+( )(e MM 1)]
oy
2 1
(C]M',')2 <0'.' )2
1
+ T,
Thus,
MA? \ 2 1
F‘, —_ [ecM; -1 + ( > (e—cM;'(v.'/M.') — 1):| . .
i (cM ) 14 <0; )2
M;
Since
dF;

dF;
<0 and — >0,
aM;

F'; is maximized by min (¢;) and max (M) = M. Letting
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min ()

M )

— e MR 2 1
R ](aM)Z'l + R
Substituting this value of F into equation (2) gives

P 2 to) < [(”)2(cﬂl 1 l_e_CMﬁ) L t] (2¢)
2 to) <exp| () (e = T cto |. c

The right-hand side is minimized when

1
F = max (F;) = [ecM -1-

. M
eM — g=eME' — t __ (] 4 R?),

g

which has no explicit solution. Re-arranging the last equation produces

o ecM —_ e——cMR2
= —e—
M 14 R?

which in conjunction with equation (2¢) provides limits to the probability in
parametric form with ¢M as the parameter. It should be noted that these
limits approach equation (8b) as R approaches zero, but elsewhere they provide
a stronger inequality. Figure 3 shows the probability limits obtained for vari-
ous values of M /o and R. Values have been plotted for R <¢/M only, since
R=[min(s;)]/M cannot be greater than /M. Graphs of P(S=ts) for
M/s=0.25, R=1% and % have not been included because they cannot be dis-
tinguished on the graph.

When each component random variable has its own bound, M ;,—a case fre-
quently arising in practical problems—the value of R is given by min (¢;/M,),
which can never be less than [min (¢;) ]/M, but may be greater. Therefore, this
value of R may lead to a lower bound for P(S={c). This improvement is par-
ticularly useful when all the component random variables are bounded at a
given number of standard deviations from their mean.

The third improvement is still applicable when the only information avail-
able about the dispersion of each component random variable is the maximum
value of its variance and its bound. The value of E(e*), equation (11), is
maximized by max(e;). If o, is below its maximum value, R will also be lower,
leading to a possible increased value of F;, but this increase is never sufficient
to compensate for the decrease in o? in equation (11). Therefore, the upper
limit to P(S=ts) obtained by using max (e¢;) will not be exceeded with any
smaller value of o;. However, this does not apply to Berry’s inequality, which
was not designed for this extension. For example, if we have 400 component
random variables, each with ;<1 and bounded at M =2, then ¢<20 and
M/oz0.1. If one random variable has the discrete distribution P(z;=3%)=0.8;
P(z1=—2)=0.2 and all the other variables have P(z;=0)=1, then P(S=3})
=P(8=0.0250) =0.8. Berry’s inequality for M/s=0.1 and t=0.025 gives
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P <0.678 whereas Uspensky’s inequality gives P <0.9994.

The above analysis may be extended when more information about the dis-
tributions of the component random variables is available. Thus, for example,
if all the components have symmetrical distributions

a\? M
P(S = te) < exp (—) <cosh (M) —1—cM — t>
M 7
where
g
! = —sinh (cM)
M

and if all the components have uniform distributions between +; and — M,

o \?/sinh (cM) M
P(S = to) < exp (——> (—— —-1- cM-t)
M cM o

where
. c¢M cosh (¢cM) — sinh (cM)
(cM)?
In conclusion, it should be noted that none of the above inequalities is the
best possible. The only cases in which the probability limits may be reached are
the trivial ones when all the o; are zero; and when M/o=1, <M /o, one com-

ponent has variance ¢? and all other components have zero variance, Uspensky’s
inequality can be achieved.
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